If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^(2)+27x=0
a = 1; b = 27; c = 0;
Δ = b2-4ac
Δ = 272-4·1·0
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-27}{2*1}=\frac{-54}{2} =-27 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+27}{2*1}=\frac{0}{2} =0 $
| f/3=-5 | | 8q+5=2- | | 8/5p+6=30 | | 5/6=u-5/4 | | -1/5p+9/5p=6=30 | | 3(x+4)+x=189 | | 8u=11(u-3) | | 2+6x=-7x+119 | | -6+5(4=3x)=-36+5x | | 2^x=17^x | | 4x-13=x+18 | | -8(-4-v)=30+7v | | 52=3w+10 | | 4x-13=x+13 | | -9=7+h | | -568.129=-828.477+t | | -13+2v=5(v+1) | | 300x+5x=200 | | 6x+16=4(x+4) | | 3(x-4)+x=4(x-2)+1 | | n+91=122 | | -4+7x=2x+31 | | 9(0)+3y=21 | | 7(6k-8)=-10-4k | | 8x-9=3-5x | | 9x+42=-32 | | -7=7(u-4) | | x–5=11–3x | | n+13=28 | | 4-5u=-16 | | 5/6x-1/3x-7=3 | | 8x-90=2x |